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Introduction

Euler's number (e) is fundamental to mathematics.

Applications range from continuous growth to complex analysis.

This presentation explores:
o Limit definition

Series expansion

Continued fractions

Numerical methods (e.g., Newton's method)
Power Ratio Method (PRM)

@ Methods are analyzed for accuracy and convergence.

Roger Rocha-Claros (MATH 490-001) Approximating Euler's Number e November 20. 2024 3/23



Limit Definition of e

1 n
e= lim <1+ >
n—o00 n

@ Originally derived from compound interest.

@ Evaluated for increasing values of n:

For n =10, 2.59374
For n =100, 2.70481
For n = 1000, 2.71692
As n — oo, 2.71828
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Graph of Limit Definition of e
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Graph shows us convergence at around past 100 terms.
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Graph of Error on the Limit Definition of e

Error for Limit Formula Approximation
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Graph shows us this method is accurate to about 2.5 decimal places.
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Maclaurin Series for e

o X"
eX:ZE, for x=1:
n=0

@ Approximation using terms:
1 1
1+1 + -l- 3 + -

@ Converges faster than the limit definition.
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Graph of Maclaurin Series Approximation

Maclaurin Series Approximation of e
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Graph shows us the this method converges at about term 6.
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Graph of Error on the Maclaurin Series Approximation

Error in Maclaurin Series for e
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Graph shows us the method is accurate to about 15.3 decimal places.
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Continued Fraction for e

Euler developed the continued fraction representation of e:

2+

s

o Offers a compact and elegant approximation.

@ Converges efficiently with increasing terms.

Roger Rocha-Claros (MATH 490-001) Approximating Euler's Number e November 20. 2024 10/23



Graph of Continued Fractions Approximation
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Graph shows us the method is rapidly converging in about 5 terms.
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Graph of Error on the Continued Fractions Approximation

Error for Continued Fraction
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Graph shows us the method is accurate to about 15.3 decimal places.
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Newton's Method

Xp1 = Xp — ;(())((:)), where f{x) = In(x) —1 =0 (1)

@ Uses iterative refinement for fast convergence.

@ Example:

xp = 2.0000, x; =2.6137, xo=2.7162
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Graph of Newton's Method for the Approximation of e

Convergence of Newton's Method for Approximating e
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Graph showing rapid convergence of Newton's method for approximating e in about 3

iterations.
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Graph of Error for Newton's Method for the Approximation
of e
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This graph shows us after 5 iterations that this method is accurate to about 12.9

decimal places.
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Power Ratio Method

o n (x+ 1)+t B x*
- XX (x—1)x1

@ This method was discovered by investigating the behavior of numbers
raised to their own power. When we examine the rate of change of
the ratio between adjacent integer values of x that have been raised
to the x power lead to the approximation of e.[2]
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Graph of Power Ratio Method for Approximating e
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Graph of Error in Power Ratio Method for Approximating e
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Graph shows that this method is accurate to about 5 decimal places.
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Comparison of Methods

Limit Definition: Intuitive, but slow convergence.
Maclaurin Series: Faster than the limit, good for computation.
Continued Fraction: Compact, efficient.

Newton’s Method: Rapid convergence.

Power Ratio Method: Unique perspective, good convergence.
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Graph of Comparisons for Approximating e
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Graph of Comparisons for Approximating e Zoomed In

Comparison of Methods for Approximating e
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Conclusion

@ Each method has unique strengths, weaknesses, and applications.

@ Newton's Method, the Power Ratio Method, Continued Fractions
approximation, and the Maclaurin approximation converge rapidly.

@ Newton's Method, Power Ratio Method, and the Limit formula for
approximation are not as accurate compared to the other methods .
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